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Note 

On the Evaluation of the Principal Value 
Integral in the Scattering Problems* 

The purpose of this note is to discuss the evaluation by a differential equation 
method of a class of principal value integrals that occur frequently in atomic and 
molecular physics. In the quantum mechanical perturbation calculations for 
scattering processes, one often deals with the matrix expression of the form [l, 21 

where Ho is Hermitian and E, = k02 is positive. As is well known [3], the meaning 
of the expression (l/E, - H,, + iq) in Eq. (1) denotes that the value J contains 
two parts: a principal value integral part P and an imaginary part 1, 

1 P 
E,, - Ho + iv = EO - H,, 

- irrS(E - HO). 

The principal value integral part P can be better expressed, on inserting a complete 
set of eigenstates P)k of Ho between H” and H’, in the matrix form as 

P = P (s,zj <h I H” I ~~a>(vk I H’ I #d 
ko2 - EI, ’ (3) 

where the principal value summation Sk .Z’ contains both bound and continuum 
intermediate state 9)k .l 

In general, a straightforward evaluation of the principal value integral P by 
numerical integration of the matrix elements is rather difficult. The difficulty lies 
in the fact that the integrands in Eq. (3) become increasingly large as k approaches 
the singularity k, from above and below. The principal value P must be obtained 
as the difference between two large, near-equal numbers, rendering the numerical 
result rather unreliable. Moreover, for atomic and molecular applications, the 
analytic behavior of the matrix elements in the integrand is, in general, not known, 
so that mathematical “tricks” (for instance, Taylor expansions *from k,,) cannot 
always be used near the singularity region. 

* Research supported in part by NASA. 
1 In general, the determination of the asymptotic boundary conditions for &, +,, and ‘pk 

depends on each individual physical process. Usually they are to be well behaved at the origin 
and bounded (I&, < 0) or oscillatory (EO > 0) at infinity. There are many discussions on this 
subject in the literature. See, for instance, A. BURGESS, Proc. Phys. Sot. 81 (1963), 442. 
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We suggest that this class of principal value integrals can be effectively and 
accurately evaluated by the differential equation approach as outlined below. 

In the differential equation approach, we define a function @, 

The function CD is equivalent to the solution of the differential equation 

(ko2 - Ho) CD = H’+, , (5) 

with appropriate boundary conditions. The first boundary condition is relatively 
trivial. We recognize, on examining Eq. (4), that @ must be well behaved at the 
origin. The second boundary condition is less transparent, and, in fact, forms the 
main motivation for this communication. We recognize that, since H,, is Hermitian, 
and therefore yk’s are orthonormal, @ must be orthogonal to vko . As both @ 
and vk, are in the continuum, and in fact, have the same wave numer, the ortho- 
gonality condition between @ and vk,,-translated into a simpler language-says 
that they must differ by 7r/2 in phase, asymptotically. That is, in obtaining the 
desired 

CD = c$” f A+h (6) 

from Eq. (5), the combination of the particular solution with the homogeneous 
solution 4” ( = @& i.e., the determination of coefficient A, must be such that the 
phase of CD is 1~12 away from that of f$+, . 

With @ thus obtained, the principal value integral we sought is, simply, 

P = <$f / H” 1 ai>. (7) 

The present approach has been extensively tested and employed in a number of 
calculations, such as the double electron ejection process by photosorption [4]. 
These applications have shown that this method is particularly effective in yielding 
fast and accurate results. 

We conclude with some relevant comments on the method. For bound-state 
type perturbation calculations, the differential equation type of approach, as 
outlined above, has been quite extensively utilized [5,6]. However, for the bound- 
state conditions, the troublesome singularity does not occur, and the straight- 
forward matrix-element integration can be effectively carried out. Furthermore, 
for bound-state conditions, one may neglect the second boundary condition (the 
orthogonality condition) in solving for CD, and still obtain the desired P by 
projecting out ykO components afterwards, 
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In contrast, it is absolutely necessary for the present scattering condition to have 
the exactly correct boundary conditions in obtaining Qi, since the overlapping 
integral (qko 1 @) in Eq. (8) will be divergent, unless they are orthogonal. This 
orthogonality can now be easily accomplished, by recognizing their 42 phase 
difference. 

Finally, we now show an analytic exercise as a demonstration of the equivalence 
of the matrix-element integration method and the differential equation method 
for scattering conditions. We assume the simple case, where 

& = c$~ = sin k,,r (i.e., s-wave), 
H’ = H” = e-ar 

HO = P2/2m (plane-wave). 

We solve the differential equation 

( $- + k,,2) @ = e+ sin(k,r). 

The homogeneous solution is c$” = sin(k,r). The second boundary condition 
implies that @ --+ cos(k,,r), when r --t co. Thus, we obtain the desired solution, 

@ = $ e--a’ sin(k,r) + % i2 (e-a7 - 1) cos(kor), 

where 
p2 = a2 + 4k02. 

Substituting Eq. (10) into Eq. (7), we obtain 

P= & Wo2 - 5a2), (11) 

where 
32 = a2 + k02. 

The principal value part of the integration is given by 

P = P 10rn (+) dk 
I<sin(k,,ry ;yksin(kr)>j2 

2 
0 

= ($)($) Psomdk ’ [ * 
1 

ko2 - k2 a2 + (k, - k)2 - a2 + (k, + k)a 1 
2 

’ 

After a straightforward but lengthy manipulation (six pages in our case!), we obtain 
identical results as in Eq. (11). 
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